Jump to: navigation, search

TelcoWorkingGroup/UseCases

< TelcoWorkingGroup
Revision as of 22:10, 26 November 2014 by Sgordon (talk | contribs) (Contributed Use Cases)

Overview

Contributed Use Cases

Template

Description

Characteristics

Requirements

Session Border Controller

Contributed by: Calum Loudon

Description

Perimeta Session Border Controller, Metaswitch Networks. Sits on the edge of a service provider's network and polices SIP and RTP (i.e. VoIP) control and media traffic passing over the access network between end-users and the core network or the trunk network between the core and another SP.

Characteristics

  • Fast and guaranteed performance:
    • Performance in the order of several million VoIP packets (~64-220 bytes depending on codec) per second per core (achievable on COTS hardware).
    • Guarantees provided via SLAs.
  • Fully high availability
    • No single point of failure, service continuity over both software and hardware failures.
  • Elastically scalable
    • NFV orchestrator adds and removes instances in response to network demands.
  • Traffic segregation (ideally)
    • Separate traffic from different customers via VLANs.

Requirements

  • High availability:
    • Requires anti-affinity rules to prevent active/passive being instantiated on same host - already supported, so no gap.
  • Elastic scaling:
    • Readily achievable using existing features - no gap.
  • Other:

Virtual IMS Core

Contributed by: Calum Loudon

Description

Project Clearwater, http://www.projectclearwater.org/. An open source implementation of an IMS core designed to run in the cloud and be massively scalable. It provides SIP-based call control for voice and video as well as SIP-based messaging apps. As an IMS core it provides P/I/S-CSCF function together with a BGCF and an HSS cache, and includes a WebRTC gateway providing interworking between WebRTC & SIP clients.

Characteristics relevant to NFV/OpenStack

  • Mainly a compute application: modest demands on storage and networking.
  • Fully HA, with no SPOFs and service continuity over software and hardware failures; must be able to offer SLAs.
  • Elastically scalable by adding/removing instances under the control of the NFV orchestrator.

Requirements

  • Compute application:
    • OpenStack already provides everything needed; in particular, there are no requirements for an accelerated data plane, nor for core pinning nor NUMA
  • HA:
    • implemented as a series of N+k compute pools; meeting a given SLA requires being able to limit the impact of a single host failure
    • potentially a scheduler gap here: affinity/anti-affinity can be expressed pair-wise between VMs, which is sufficient for a 1:1 active/passive architecture, but an N+k pool needs a concept equivalent to "group anti-affinity" i.e. allowing the NFV orchestrator to assign each VM in a pool to one of X buckets, and requesting OpenStack to ensure no single host failure can affect more than one bucket
    • (there are other approaches which achieve the same end e.g. defining a group where the scheduler ensures every pair of VMs within that group are not instantiated on the same host)
    • for study whether this can be implemented using current scheduler hints
  • Elastic scaling:
    • as for compute requirements there is no gap - OpenStack already provides everything needed.

References: