Jump to: navigation, search

StarlingX/Docs and Infra/InstallationGuides/baremetal-Controllers-and-Computes-with-Storage-Cluster

< StarlingX‎ | Docs and Infra‎ | InstallationGuides
Revision as of 11:41, 11 August 2019 by Greg-waines (talk | contribs) (Install Software on Controller-0)

Deployment Diagram

Starlingx-deployment-options-dedicated-storage1.png



Hardware Requirements for Bare Metal Servers

The recommended minimum requirements for the Bare Metal Servers for the various host types are:

Minimum Requirement Controller Node Storage Node Compute Node
Number of Servers 2 2 - 9 2 - 100
Minimum Processor Class Dual-CPU Intel® Xeon® E5 26xx Family (SandyBridge) 8 cores/socket
Minimum Memory 64 GB 64GB 32 GB
Primary Disk 500 GB SDD or NVMe 120 GB (min. 10K RPM) 120 GB (Minimum 10K RPM)
Additional Disks None 1 or more 500 GB (min. 10K RPM) for Ceph OSD.

Recommend, but not required,
1 or more SSDs or NVMe drives for Ceph journals (min. 1024 MiB per OSD journal)
For OpenStack, recommend 1 or more 500 GB (min. 10K RPM) for VM local ephemeral storage
Minimum Network Ports Mgmt/Cluster: 1x10GE
OAM: 1x1GE
Mgmt/Cluster: 1x10GE Mgmt/Cluster: 1x10GE
Data: 1 or more x 10GE
BIOS Settings Hyper-Threading technology enabled
Virtualization technology enabled
VT for directed I/O enabled
CPU power and performance policy set to performance
CPU C state control disabled
Plug & play BMC detection disabled




Prepare Servers

Prior to starting the installation, the Bare Metal Servers should be:

  • physically installed,
  • cabled for power,
  • cabled for networking
    • with the far-end switch ports properly configured to realize the networking of the above deployment diagram
  • all disks should be wiped
    • such that servers will boot from either the network or USB storage (if present),
  • and powered off.




Install the Kubernetes Platform

Create a bootable USB with the StarlingX ISO

Get the StarlingX ISO. This can be from a private StarlingX build or, as shown below, from the public Cengen StarlingX build off 'master' branch:

wget http://mirror.starlingx.cengn.ca/mirror/starlingx/master/centos/latest_build/outputs/iso/bootimage.iso

Create a bootable USB with the StarlingX ISO:

# Insert USB stick

# Identify USB in mounted filesystems
$ df
Filesystem 1K-blocks Used Available Use% Mounted on
udev 16432268 0 16432268 0% /dev
tmpfs 3288884 26244 3262640 1% /run
/dev/mapper/md0_crypt 491076512 9641092 456420380 3% /
tmpfs 16444408 105472 16338936 1% /dev/shm
tmpfs 5120 4 5116 1% /run/lock
tmpfs 16444408 0 16444408 0% /sys/fs/cgroup
/dev/sdc1 122546800 124876 116153868 1% /boot
tmpfs 3288880 24 3288856 1% /run/user/119
tmpfs 3288880 72 3288808 1% /run/user/1000
/dev/sdd1 1467360 1467360 0 100% /media/vivek/data

# Unmount
$ sudo umount /media/vivek/data

# Use 'dd' to copy StarlingX bootimage.iso to USB
$ sudo dd if=artful-desktop-amd64.iso of=/dev/sdd bs=1M status=progress


Install Software on Controller-0

Insert the bootable USB into a bootable USB port on the host you are configuring as controller-0.

Power on the host.


The controller-0 virtual server, 'simplex-controller-0', has been started/virtually-powered-on by the previous 'setup_configuration.sh' command.

Attach to the console of virtual controller-0 and select the appropriate installer menu options in order to start the non-interactive install of StarlingX software on controller-0.

Caution icon.svg WARNING

When entering the console it is very easy to miss the first installer menu selection; use ESC to go to previous menus, in order to ensure you are at the first installer menu selection.
virsh console simplex-controller-0

Wait for non-interactive install of software to complete and server to reboot.
This can take 5-10 mins depending on performance of HOST machine.

Bootstrap System on Controller-0

Login with username / password of sysadmin / sysadmin.
When logging in for the first time, you will be forced to change the password.

Login: sysadmin
Password:
Changing password for sysadmin.
(current) UNIX Password: sysadmin
New Password:
(repeat) New Password:


External connectivity is required to run the Ansible bootstrap playbook.

export CONTROLLER0_OAM_CIDR=10.10.10.3/24
export DEFAULT_OAM_GATEWAY=10.10.10.1
sudo ip address add $CONTROLLER0_OAM_CIDR dev enp7s1
sudo ip link set up dev enp7s1
sudo ip route add default via $DEFAULT_OAM_GATEWAY dev enp7s1


Ansible is used to bootstrap StarlingX on Controller-0:

  • The default Ansible inventory file, /etc/ansible/hosts, contains a single host, localhost.
  • The Ansible bootstrap playbook is at /usr/share/ansible/stx-ansible/playbooks/bootstrap/bootstrap.yml .
  • The default configuration values for the bootstrap playbook are in /usr/share/ansible/stx-ansible/playbooks/bootstrap/host_vars/default.yml .
  • By default Ansible looks for and imports user configuration override files for hosts in the sysadmin home directory ($HOME), e.g. $HOME/<hostname>.yml .


Specify the user configuration override file for the ansible bootstrap playbook, by copying the above default.yml file to $HOME/localhost.yml and edit the configurable values as desired, based on the commented instructions in the file.
or
Simply create the minimal user configuration override file as shown below:

cd ~
cat <<EOF > localhost.yml 
system_mode: simplex

dns_servers:
  - 8.8.8.8
  - 8.8.4.4

external_oam_subnet: 10.10.10.0/24
external_oam_gateway_address: 10.10.10.1
external_oam_floating_address: 10.10.10.2

admin_username: admin
admin_password: <sysadmin-password>
ansible_become_pass: <sysadmin-password>
EOF

Run the Ansible bootstrap playbook:

ansible-playbook /usr/share/ansible/stx-ansible/playbooks/bootstrap/bootstrap.yml

Wait for Ansible bootstrap playbook to complete.
This can take 5-10 mins depending on performance of HOST machine.


Configure Controller-0

Acquire admin credentials:

source /etc/platform/openrc

Configure the OAM interface of controller-0:

OAM_IF=enp7s1
system host-if-modify controller-0 $OAM_IF -c platform
system interface-network-assign controller-0 $OAM_IF oam

Configure NTP Servers for network time synchronization:

Caution icon.svg Attention

Baremetal hardware only. Skip this step in a virtual environment as it can cause Ceph’s clock skew alarms. Moreover, clock of virtual instances is synchronized with the host clock so there is no need to configure NTP here..
system ntp-modify ntpservers=0.pool.ntp.org,1.pool.ntp.org


Configure data interfaces for controller-0:

DATA0IF=eth1000
DATA1IF=eth1001
export COMPUTE=controller-0
PHYSNET0='physnet0'
PHYSNET1='physnet1'
SPL=/tmp/tmp-system-port-list
SPIL=/tmp/tmp-system-host-if-list
system host-port-list ${COMPUTE} --nowrap > ${SPL}
system host-if-list -a ${COMPUTE} --nowrap > ${SPIL}
DATA0PCIADDR=$(cat $SPL | grep $DATA0IF |awk '{print $8}')
DATA1PCIADDR=$(cat $SPL | grep $DATA1IF |awk '{print $8}')
DATA0PORTUUID=$(cat $SPL | grep ${DATA0PCIADDR} | awk '{print $2}')
DATA1PORTUUID=$(cat $SPL | grep ${DATA1PCIADDR} | awk '{print $2}')
DATA0PORTNAME=$(cat $SPL | grep ${DATA0PCIADDR} | awk '{print $4}')
DATA1PORTNAME=$(cat  $SPL | grep ${DATA1PCIADDR} | awk '{print $4}')
DATA0IFUUID=$(cat $SPIL | awk -v DATA0PORTNAME=$DATA0PORTNAME '($12 ~ DATA0PORTNAME) {print $2}')
DATA1IFUUID=$(cat $SPIL | awk -v DATA1PORTNAME=$DATA1PORTNAME '($12 ~ DATA1PORTNAME) {print $2}')

system datanetwork-add ${PHYSNET0} vlan
system datanetwork-add ${PHYSNET1} vlan

system host-if-modify -m 1500 -n data0 -c data ${COMPUTE} ${DATA0IFUUID}
system host-if-modify -m 1500 -n data1 -c data ${COMPUTE} ${DATA1IFUUID}
system interface-datanetwork-assign ${COMPUTE} ${DATA0IFUUID} ${PHYSNET0}
system interface-datanetwork-assign ${COMPUTE} ${DATA1IFUUID} ${PHYSNET1}

Add an OSD on controller-0 for ceph:

echo ">>> Add OSDs to primary tier"
system host-disk-list controller-0
system host-disk-list controller-0 | awk '/\/dev\/sdb/{print $2}' | xargs -i system host-stor-add controller-0 {}
system host-stor-list controller-0


OpenStack-specific Host Configuration

Caution icon.svg OpenStack-ONLY

The following configuration is only required if the OpenStack application (stx-openstack) will be installed.

For OpenStack ONLY, assign OpenStack host labels to controller-0 in support of installing the stx-openstack manifest/helm-charts later.

system host-label-assign controller-0 openstack-control-plane=enabled
system host-label-assign controller-0 openstack-compute-node=enabled
system host-label-assign controller-0 openvswitch=enabled
system host-label-assign controller-0 sriov=enabled


For OpenStack ONLY, a vSwitch is required.

The default vSwitch is containerized OVS that is packaged with the stx-openstack manifest/helm-charts. StarlingX provides the option to use OVS-DPDK on the host, however in the virtual environment OVS-DPDK is NOT supported, only OVS is supported. Therefore simply use the default OVS vSwitch here.


For OpenStack Only, setup disk partition for nova-local volume group, needed for stx-openstack nova ephemeral disks.

export COMPUTE=controller-0

echo ">>> Getting root disk info"
ROOT_DISK=$(system host-show ${COMPUTE} | grep rootfs | awk '{print $4}')
ROOT_DISK_UUID=$(system host-disk-list ${COMPUTE} --nowrap | grep ${ROOT_DISK} | awk '{print $2}')
echo "Root disk: $ROOT_DISK, UUID: $ROOT_DISK_UUID"

echo ">>>> Configuring nova-local"
NOVA_SIZE=34
NOVA_PARTITION=$(system host-disk-partition-add -t lvm_phys_vol ${COMPUTE} ${ROOT_DISK_UUID} ${NOVA_SIZE})
NOVA_PARTITION_UUID=$(echo ${NOVA_PARTITION} | grep -ow "| uuid | [a-z0-9\-]* |" | awk '{print $4}')
system host-lvg-add ${COMPUTE} nova-local
system host-pv-add ${COMPUTE} nova-local ${NOVA_PARTITION_UUID}
sleep 2

echo ">>> Wait for partition $NOVA_PARTITION_UUID to be ready."
while true; do system host-disk-partition-list $COMPUTE --nowrap | grep $NOVA_PARTITION_UUID | grep Ready; if [ $? -eq 0 ]; then break; fi; sleep 1; done



Unlock Controller-0

Unlock controller-0 in order to bring it into service:

system host-unlock controller-0

Controller-0 will reboot in order to apply configuration change and come into service.
This can take 5-10 mins depending on performance of HOST machine.

When it completes, your Kubernetes Cluster is up and running.


Access StarlingX Kubernetes

Use Local/Remote CLIs, GUIs and/or REST APIs to access and manage StarlingX Kubernetes and hosted containerized applications. See details here.