

OpenStack Load

Balancing API
OpenStack Specification Proposal

Draft Proposal by Citrix

Based on Rackspace Cloud Load Balancers API v1.0

(Beta)

Table of Contents

1. Overview ... 1

1.1. Intended Audience .. 1

1.2. Document Change History .. 1

2. Concepts .. 2

2.1. Load Balancer ... 2

2.2. Virtual IP ... 2

2.3. Node ... 2

2.4. Health Monitor ... 2

2.4.1. Passive Health Monitor ... 2

2.4.2. Active Health Monitor .. 2

2.5. Session Persistence ... 3

2.6. Connection Logging .. 3

3. API Operations ... 4

3.1. List LoadBalancers .. 4

3.2. List LoadBalancer Details ... 6

3.3. Create LoadBalancer .. 8

3.4. Remove Load Balancer ... 15

3.5. List, Add, Modify, and Remove Nodes .. 15

3.5.1. List Nodes .. 16

3.5.2. Add Nodes ... 17

3.5.3. Modify Node ... 19

3.5.4. Remove Node .. 20

3.6. Update Load Balancer Attributes ... 21

3.7. Usage Reporting ... 23

3.8. Active Health Monitoring ... 24

3.8.1. Connection Monitor .. 24

3.8.2. HTTP/HTTPS Monitor .. 25

3.8.3. Retrieve the Health Monitor ... 25

3.8.4. Update a Health Monitor .. 26

3.8.5. Delete a Health Monitor ... 27

3.9. Session Persistence ... 29

3.9.1. Retrieve Session Persistence configuration .. 29

3.9.2. Enable Session Persistence on a Load Balancer ... 30

3.9.3. Disable Session Persistence on a Load Balancer .. 31

3.10. Connection Logging .. 32

3.10.1. Retrieve Connection Logging configuration .. 32

3.10.2. Enable or Disable Connection Logging on a Load Balancer 33

3.11. Connection Throttling ... 34

3.11.1. Retrieve Connection Throttling configuration .. 35

3.11.2. Update Connection Throttling configuration .. 36

3.11.3. Remove Connection Throttling Configuration .. 37

3.12. Load Balancing Protocols.. 38

3.13. Load Balancing Algorithms ... 39

3.14. Load Balancer Status .. 40

4. API Faults ... 44

4.1. serviceFault... 44

4.2. loadBalancerFault .. 44

4.3. badRequest ... 44

4.4. itemNotFound .. 45

4.5. overLimit ... 45

4.6. unauthorized .. 45

4.7. outOfVirtualIps ... 46

4.8. unprocessableEntity ... 46

4.9. serviceUnavailable ... 46

5. API Extensions ... 48

5.1. Discovering extensions ... 48

5.2. Using extended APIs ... 49

1

1. Overview

This draft API is based on the Rackspace Cloud Load Balancers API (Beta). It

is a strict subset of the Rackspace API that can accommodate several Load

Balancing vendors, including Citrix NetScaler and Open Source solutions like

HA Proxy.

The API allows for extensions by OpenStack Cloud Providers and Load

Balancer vendors to expose extra functionality through an API that is a

superset of this API.

1.1. Intended Audience

This guide is intended for software developers who want to create

applications using the OpenStack Load Balancing API. It assumes the reader

has a general understanding of load balancing concepts and is familiar with:

• RESTful web services

• HTTP/1.1 conventions

• JSON and/or XML serialization formats

1.2. Document Change History

This version of the Developer Guide replaces and supersedes all previous

versions. The most recent changes are described in the table below:

Revision Date Summary of Changes

Revision Date Summary of Changes

1st Draft 4th April

2

2. Concepts

To use the OpenStack Load Balancing API effectively, you should understand

several key concepts:

2.1. Load Balancer

A load balancer is a logical device which belongs to a cloud account. It is

used to distribute workloads between multiple back-end systems or services,

based on the criteria defined as part of its configuration.

2.2. Virtual IP

A virtual IP is the IP address configured on the load balancer for use by

clients connecting to a service that is load balanced. Incoming connections

are distributed to back-end nodes based on the configuration of the load

balancer.

2.3. Node

A node is a back-end device providing a service on a specified IP and port.

2.4. Health Monitor

A health monitor is a feature of the load balancer that is used to determine

whether or not a back-end node is usable for processing a request. The

service supports two types of health monitors: passive and active.

2.4.1. Passive Health Monitor
By default, all load balancing configurations utilize a passive health monitor,

which is the default monitoring and does not require configuration from the

user. If the passive health monitoring determines that a node is down,

unreachable or malfunctioning, it puts the node in an OFFLINE state and

stops sending traffic to it.

2.4.2. Active Health Monitor
Active health monitoring is a technique that uses synthetic transactions that

are executed at periodic intervals to determine the condition of a node. When

active monitoring is enabled, it takes over the monitoring of the node, and

passive monitoring is disabled. Conversely, when active monitoring

configuration is removed by the user, passive monitoring is re-enabled for

the nodes of the load balancer.

3

The active health monitor can use one of three types of probes:

• connect

• HTTP

• HTTPS

These probes are executed at configured intervals; in the event of a failure,

the node status changes to OFFLINE and the node will not receive traffic. If,

after running a subsequent test, the probe detects that the node has

recovered, then the node's status is changed to ONLINE and it is capable of

servicing requests.

2.5. Session Persistence

Session persistence is a feature of the load balancing service that attempts to

force subsequent connections to a service to be redirected to the same node

as long as it is ONLINE.

2.6. Connection Logging

The connection logging feature allows for retrieving access logs (for HTTP-

based protocol traffic) or connection and transfer logs (for all other traffic).

4

3. API Operations

3.1. List LoadBalancers

Normal Response Code(s): 200

Error Response Code(s): loadBalancerFault (400, 500), serviceUnavailable

(503), unauthorized (401), badRequest(400)

This request returns a list of load balancers currently configured for the

account.

This operation does not require a request body.

Example: List Load Balancers Response: XML

Verb

URI Description Representation

GET /loadbalancers List all
loadbalancers
configured for an

account

XML, JSON

<?xml version="1.0" encoding="UTF-8"?>

<loadBalancers xmlns="http://docs.openstack.org/loadbalancers/api/v1.0">

 <loadBalancer id="71" name="lb-site1" status="ACTIVE"

 protocol="HTTP" port="80" algorithm="ROUND_ROBIN">

 <virtualIp address="206.55.130.2" ipVersion="IPV4" type="PUBLIC" />

 <cluster name="dc-eastcoast-4" />

 <created time="2010-11-29T17:31:41Z" />

 <updated time="2010-11-30T08:35:15Z" />

 </loadBalancer>

 <loadBalancer id="166" name="lb-site2" status="ACTIVE"

 protocol="HTTP" port="80" algorithm="LEAST_CONNECTIONS">

 <virtualIp address="206.55.130.15" ipVersion="IPV4" type="PUBLIC" />

 <cluster name="dc-eastcoast-4" />

 <created time="2010-11-30T03:23:42Z" />

 <updated time="2010-11-30T03:23:44Z" />

 </loadBalancer>

</loadBalancers>

5

Example: List Load Balancers Response: JSON

{

 "loadBalancers" : [

 {

 "id" : "71",

 "name":"lb-site1",

 "status":"ACTIVE",

 "protocol":"HTTP",

 "port":"80",

 "algorithm":"ROUND_ROBIN",

 "virtualIp": {

 "address":"206.55.130.2",

 "ipVersion":"IPV4",

 "type":"PUBLIC"

 },

 "nodes": [

 {

 "id":"1041",

 "address":"10.1.1.1",

 "port":"80",

 "condition":"ENABLED",

 "status":"ONLINE"

 },

 {

 "id":"1411",

 "address":"10.1.1.2",

 "port":"80",

 "condition":"ENABLED",

 "status":"ONLINE"

 }

],

 "sessionPersistence": {

 "persistenceType":"HTTP_COOKIE"

 },

 "connectionLogging":{

 "enabled":"true"

 },

 "cluster":{

 "name":"dc-eastcoast-4"

 },

 "created":{

 "time":"2010-11-30T03:23:42.000+0000"

 },

 "updated":{

 "time":"2010-11-30T03:23:44.000+0000"

 }

 }

]

}

6

3.2. List LoadBalancer Details

Normal Response Code(s): 200

Error Response Code(s): loadBalancerFault (400, 500), serviceUnavailable

(503), unauthorized (401), badRequest(400), overLimit (413)

This operation provides detailed output for a specific load balancer configured

and associated with your account.

This operation does not require a request body.

Example: List Load Balancer Details Response: XML

Verb

URI Description Representation

GET /loadbalancers/loadBalancerId List details of
the specified

load balancer

XML, JSON

<?xml version="1.0" encoding="UTF-8"?>

<loadBalancer xmlns="http://docs.openstack.org/loadbalancers/api/v1.0" id="71" name="lb-site1"

status="ACTIVE" protocol="HTTP" port="80" algorithm="ROUND_ROBIN">

 <virtualIp address="206.55.130.2" ipVersion="IPV4" type="PUBLIC" />

 <nodes>

 <node id="1041" address="10.1.1.1" port="80" condition="ENABLED" status="ONLINE" />

 <node id="1411" address="10.1.1.2" port="80" condition="ENABLED" status="ONLINE" />

 </nodes>

 <sessionPersistence persistenceType="HTTP_COOKIE" />

 <connectionLogging enabled="true" />

 <cluster name="c1.dfw1" />

 <created time="2010-11-30T03:23:42Z" />

 <updated time="2010-11-30T03:23:44Z" />

</loadBalancer>

7

Example: Get Load Balancer Details Response: JSON

{

 "id" : "71",

 "name":"lb-site1",

 "status":"ACTIVE",

 "protocol":"HTTP",

 "port":"80",

 "algorithm":"ROUND_ROBIN",

 "virtualIp": {

 "address":"206.55.130.2",

 "ipVersion":"IPV4",

 "type":"PUBLIC"

 },

 "nodes": [

 {

 "id":"1041",

 "address":"10.1.1.1",

 "port":"80",

 "condition":"ENABLED",

 "status":"ONLINE"

 },

 {

 "id":"1411",

 "address":"10.1.1.2",

 "port":"80",

 "condition":"ENABLED",

 "status":"ONLINE"

 }

],

 "sessionPersistence": {

 "persistenceType":"HTTP_COOKIE"

 },

 "connectionLogging":{

 "enabled":"true"

 },

 "cluster":{

 "name":"c1.dfw1"

 },

 "created":{

 "time":"2010-11-30T03:23:42.000+0000"

 },

 "updated":{

 "time":"2010-11-30T03:23:44.000+0000"

 }

}

8

3.3. Create LoadBalancer

Normal Response Code(s): 202

Error Response Code(s): loadBalancerFault (400, 500), serviceUnavailable

(503), unauthorized (401), badRequest(400), overLimit (413)

This operation asynchronously provisions a new load balancer based on the

configuration defined in the request object. Once the request is validated and

progress has started on the provisioning process, a response object will be

returned. The object will contain a unique identifier and status of the request.

Using the identifier, the caller can check on the progress of the operation by

performing a GET on loadbalancers/id. If the corresponding request cannot

be fulfilled due to insufficient or invalid data, an HTTP 400 (Bad Request)

error response will be returned with information regarding the nature of the

failure in the body of the response. Failures in the validation process are non-

recoverable and require the caller to correct the cause of the failure and

POST the request again.

Note

Users may configure all documented features of the load balancer at creation time by

simply providing the additional elements / attributes in the request. Refer to the

subsequent sections of this specification for an overview of all features the load

balancing service supports.

Verb

URI Description Representation

POST

/loadbalancers Create a new load
balancer with the

configuration
defined by the

request.

XML, JSON

9

Example: Create Load Balancer (Required Attributes) Request: XML

Example: Create Load Balancer (Required Attributes) Response: XML

<?xml version="1.0" encoding="UTF-8"?>

<loadBalancer xmlns="http://docs.openstack.org/loadbalancers/api/v1.0" id="71" name="a-new-

loadbalancer" protocol="HTTP" port="80" algorithm="ROUND_ROBIN">

 <virtualIp type="PUBLIC" />

 <nodes>

 <node address="10.1.1.1" port="80" />

 <node address="10.1.1.2" port="8080" />

 </nodes>

</loadBalancer>

<?xml version="1.0" encoding="UTF-8"?>

<loadBalancer xmlns="http://docs.openstack.org/loadbalancers/api/v1.0" id="71" name="a-new-

loadbalancer" status="ACTIVE" protocol="HTTP" port="80" algorithm="ROUND_ROBIN">

 <virtualIp address="206.55.130.2" ipVersion="IPV4" type="PUBLIC" />

 <nodes>

 <node id="1041" address="10.1.1.1" port="80" condition="ENABLED" status="ONLINE" />

 <node id="1411" address="10.1.1.2" port="8080" condition="ENABLED" status="ONLINE" />

 </nodes>

 <cluster name="dc-eastcoast-4" />

 <created time="2011-03-14T11:41:37Z" />

 <updated time="2011-03-15T08:05:21Z" />

</loadBalancer>

10

Example: Create Load Balancer (Required Attributes) Request: JSON

{

 "loadBalancer" : {

 "name":"a-new-loadbalancer ",

 "protocol":"HTTP",

 "port":"80",

 "algorithm":"ROUND_ROBIN",

 "virtualIp": {"type":"PUBLIC"},

 "nodes": [

 {

 "address":"10.1.1.1",

 "port":"80",

 },

 {

 "address":"10.1.1.2",

 "port":"8080",

 }

]

 }

}

11

Example: Create Load Balancer (Required Attributes) Response: JSON

{

 "loadBalancer" :

 {

 "id" : "71",

 "name":"a-new-loadbalancer",

 "status":"ACTIVE",

 "protocol":"HTTP",

 "port":"80",

 "algorithm":"ROUND_ROBIN",

 "virtualIp": {

 "address":"206.55.130.2",

 "ipVersion":"IPV4",

 "type":"PUBLIC"

 },

 "nodes": [

 {

 "id":"1041",

 "address":"10.1.1.1",

 "port":"80",

 "condition":"ENABLED",

 "status":"ONLINE"

 },

 {

 "id":"1411",

 "address":"10.1.1.2",

 "port":"80",

 "condition":"ENABLED",

 "status":"ONLINE"

 }

],

 "sessionPersistence": {

 "persistenceType":"HTTP_COOKIE"

 },

 "connectionLogging":{

 "enabled":"true"

 },

 "cluster":{

 "name":"c1.dfw1"

 },

 "created":{

 "time":"2010-11-30T03:23:42.000+0000"

 },

 "updated":{

 "time":"2010-11-30T03:23:44.000+0000"

 }

 }

}

12

If you have at least one load balancer, you may create subsequent load

balancers that share a single virtual IP by issuing a POST and supplying a

virtual IP address instead of a type. Additionally, this feature is highly

desirable if you wish to load balance both an unsecured and secure protocol

using one IP / DNS name (for example, HTTP and HTTPS).

Example: Create Load Balancer (Required Attributes with Shared IP)

Request: XML

Example: Create Load Balancer (Required Attributes with Shared IP)

Response: XML

<?xml version="1.0" encoding="UTF-8"?>

<loadBalancer xmlns="http://docs.openstack.org/loadbalancers/api/v1.0" name="another-loadbalancer"

protocol="HTTPS" port="80" algorithm="ROUND_ROBIN">

 <virtualIp address="206.10.10.210" />

 <nodes>

 <node address="10.1.1.3" port="80" />

 <node address="10.1.1.4" port="80" />

 </nodes>

</loadBalancer>

<?xml version="1.0" encoding="UTF-8"?>

<loadBalancer xmlns="http://docs.openstack.org/loadbalancers/api/v1.0" id="83" name="another-

loadbalancer" status="ACTIVE" protocol="HTTP" port="80" algorithm="ROUND_ROBIN">

 <virtualIp address="206.55.130.2" ipVersion="IPV4" type="PUBLIC" />

 <nodes>

 <node id="1421" address="10.1.1.3" port="80" condition="ENABLED" status="ONLINE" />

 <node id="1422" address="10.1.1.4" port="80" condition="ENABLED" status="ONLINE" />

 </nodes>

</loadBalancer>

13

Example: Create Load Balancer (Required Attributes with Shared IP)

Request: JSON

{

 "loadBalancer" :

 {

 "name":"another-loadbalancer ",

 "protocol":"HTTP",

 "port":"80",

 "algorithm":"ROUND_ROBIN",

 "virtualIp": {

 "address":"206.10.10.210"

 },

 "nodes": [

 {

 "address":"10.1.1.3",

 "port":"80",

 },

 {

 "address":"10.1.1.4",

 "port":"80",

 }

]

 }

}

14

Example: Create Load Balancer (Required Attributes with Shared IP)

Response: JSON

{

 "loadBalancer" :

 {

 "id":"83 ",

 "name":"another-loadbalancer ",

 "protocol":"HTTP",

 "port":"80",

 "algorithm":"ROUND_ROBIN",

 "virtualIp": {

 "address":"206.10.10.210",

 "ipVersion":"IPV4",

 "type":"PUBLIC"

 },

 "nodes": [

 {

 "id":"1421 ",

 "address":"10.1.1.3",

 "port":"80",

 "condition":"ENABLED",

 "status":"ONLINE"

 },

 {

 "id":"1422 ",

 "address":"10.1.1.4",

 "port":"80",

 "condition":"ENABLED",

 "status":"ONLINE"

 }

],

 "cluster":{

 "name":"c1.dfw1"

 },

 "created":{

 "time":"2010-11-30T03:23:42.000+0000"

 },

 "updated":{

 "time":"2010-11-30T03:23:44.000+0000"

 }

 }

}

15

3.4. Remove Load Balancer

Normal Response Code(s): 202

Error Response Code(s): loadBalancerFault (400, 500), serviceUnavailable

(503), unauthorized (401), badRequest(400)

The remove load balancer function removes the specified load balancer and

its associated configuration from the account. Any and all configuration data

is immediately purged and is not recoverable.

This operation does not require a request body.

This operation does not return a response body.

3.5. List, Add, Modify, and Remove Nodes

Verb URI Description

DELETE

/loadbalancers/loadBalancerId Removes a
loadbalancer from
an account

Verb URI Description Representation

GET

/loadbalancers/loadBalance

rId/nodes

List nodes configured

for the load balancer.

XML, JSON

POST /loadbalancers/loadBalance

rId/nodes/nodeId

Add a new node to the

load balancer

XML, JSON

PUT /loadbalancers/loadBalance
rId/nodes/nodeId

Modifies the
configuration of a node

on the load balancer

XML, JSON

DELETE /loadbalancers/loadBalance

rId/nodes/nodeId

Removes a node from

the load balancer

GET /loadbalancers/loadBalance

rId/nodes/nodeId

List details for a

specific node

XML, JSON

16

The nodes defined by the load balancer are responsible for servicing the

requests received through the load balancer's virtual IP. By default, the load

balancer employs a basic health check that ensures the node is listening on

its defined port. The node is checked at the time of addition and at regular

intervals as defined by the load balancer health check configuration. If a

back-end node is not listening on its port or does not meet the conditions of

the defined active health check for the load balancer, then the load balancer

will not forward connections and its status will be listed as OFFLINE. Only

nodes that are in an ONLINE status will receive and be able to service traffic

from the load balancer.

All nodes have an associated status that indicates whether the node is online

or offline. Only nodes that are in an ONLINE status will receive and be able to

service traffic from the load balancer. The OFFLINE status represents a node

that cannot accept or service traffic. The status is determined by the passive

or active health monitors.

The caller can assign weights to the nodes as part of the weight attribute of

the node element. When the nodes do not already have an assigned weight,

the service will automatically set the weight to "1" for all nodes.

When a node is added, it is assigned a unique identifier that can be used for

mutating operations such as changing the condition or removing it.

3.5.1. List Nodes

Normal Response Code(s): 200

Error Response Code(s): loadBalancerFault (400, 500), serviceUnavailable

(503), unauthorized (401), badRequest(400)

This operation does not require a request body.

Verb URI Description Representation

GET

/loadbalancers/loadBalance
rId/nodes

List nodes configured
for the load balancer.

XML, JSON

17

Example: List Node Response: XML

Example: List Node Response: JSON

3.5.2. Add Nodes

Normal Response Code(s): 202

Error Response Code(s): loadBalancerFault (400, 500), serviceUnavailable

(503), unauthorized (401), badRequest(400), overLimit (413)

Verb URI Description Representation

POST

/loadbalancers/loadBalance
rId/nodes

Add nodes to the load
balancer.

XML, JSON

<?xml version="1.0" encoding="UTF-8"?>

<nodes xmlns="http://docs.openstack.org/loadbalancers/api/v1.0" >

 <node id="1421" address="10.1.1.3" port="80" condition="ENABLED" status="ONLINE" />

 <node id="1422" address="10.1.1.4" port="80" condition="ENABLED" status="ONLINE" />

</nodes>

{

 "nodes": [

 {

 "id":"1421",

 "address":"10.1.1.3",

 "port":"80",

 "condition":"ENABLED",

 "status":"ONLINE"

 },

 {

 "id":"1422",

 "address":"10.1.1.4",

 "port":"80",

 "condition":"ENABLED",

 "status":"ONLINE"

 },

]

}

18

Example: Add Nodes Request: XML

URI: /loadbalancers/4532/nodes

Request:

Response:

Example: Add Nodes Request: JSON

URI: /loadbalancers/4532/nodes

Request:

<?xml version="1.0" encoding="UTF-8"?>

<nodes xmlns="http://docs.openstack.org/loadbalancers/api/v1.0" >

 <node address="10.1.1.5" port="80" />

 <node address="10.1.1.10" port="80" weight="2" />

</nodes>

{

 "nodes": [

 {

 "address":"10.1.1.5",

 "port":"80",

 },

 {

 "address":"10.1.1.10",

 "port":"80",

 "weight":"2"

 },

]

}

<?xml version="1.0" encoding="UTF-8"?>

<nodes xmlns="http://docs.openstack.org/loadbalancers/api/v1.0" >

 <node id="271" address="10.1.1.5" port="80" condition="ENABLED" status="ONLINE" />

 <node id="1231" address="10.1.1.10" port="80" weight="2" condition="ENABLED"

status="ONLINE" />

</nodes>

19

Response:

3.5.3. Modify Node

Normal Response Code(s): 202

Error Response Code(s): loadBalancerFault (400, 500), serviceUnavailable

(503), unauthorized (401), badRequest(400)

Note

The node's IP and Port are immutable attributes and cannot be modified by the caller

for a PUT request. Supplying an unsupported attribute will result in a 400 (badRequest)

fault.

This operation does not return a response.

Verb URI Description Representation

PUT /loadbalancers/loadBalance

rId/nodes/nodeId

Modifies attributes of

a balancer’s node.

XML, JSON

{

 "nodes": [

 {

 "id":"271",

 "address":"10.1.1.5",

 "port":"80",

 "condition":"ENABLED",

 "status":"ONLINE"

 },

 {

 "id":"1231",

 "address":"10.1.1.10",

 "port":"80",

 "weight":"2",

 "condition":"ENABLED",

 "status":"ONLINE"

 },

]

}

20

Example: Modify Node’s Condition Request: XML

URI: /loadbalancers/4532/nodes/271

Request:

Example: Modify Node’s Condition and Weight Request: JSON

URI: /loadbalancers/4532/nodes/271

Request:

3.5.4. Remove Node

Normal Response Code(s): 202

Error Response Code(s): loadBalancerFault (400, 500), serviceUnavailable

(503), unauthorized (401), badRequest(400)

This operation does not require a request body.

This operation does not return a response body.

Verb URI Description

DELETE

/loadbalancers/loadBalancerId/nodes/nodeId Removes a node from

the load balancer

<?xml version="1.0" encoding="UTF-8"?>

<node xmlns="http://docs.openstack.org/loadbalancers/api/v1.0" condition=" DISABLED" />

{

 "condition":"DISABLED" ,

 "weight":"4"

}

21

3.6. Update Load Balancer Attributes

Normal Response Code(s): 202

Error Response Code(s): loadBalancerFault (400, 500), serviceUnavailable

(503), unauthorized (401), badRequest(400), overLimit (413)

This operation asynchronously updates the attributes of the specified load

balancer. Upon successful validation of the request, the service will return a

202 (Accepted) response code.

A caller can poll the load balancer with its ID to wait for the changes to be

applied and the load balancer to return to an ACTIVE status.

This operation allows the caller to change one or more of the following

attributes:

 name

 algorithm

This operation does not return a response body.

Note

The load balancer's ID, port, protocol and status are immutable attributes and cannot be

modified by the caller. Supplying an unsupported attribute will result in a 400

(badRequest) fault.

Example: Modify LoadBalancer’s Algorithm Request: XML

URI: /loadbalancers/4532

Request:

Verb

URI Description Representation

PUT

/loadbalancers/loadBalancerId Update the
properties of

the load
balancer

XML, JSON

<?xml version="1.0" encoding="UTF-8"?>

<loadBalancer xmlns="http://docs.openstack.org/loadbalancers/api/v1.0"

algorithm="LEAST_CONNECTIONS" />

22

Example: Modify LoadBalancer’s name Request: JSON

URI: /loadbalancers/738

Request:

{

 "name":"loadbalancer-v2"

}

23

3.7. Usage Reporting

Normal Response Code(s): 200

Error Response Code(s): loadBalancerFault (400, 500), serviceUnavailable

(503), unauthorized (401), badRequest(400)

The load balancer usage reports provide a view of all data transfer associated

with the load balancer. Values for both incomingTransfer and

outgoingTransfer are expressed in bytes transferred.

This operation does not require a request body.

Example: Get Usage Response: XML

Example: Get Usage Response: JSON

Verb

URI Description Representation

GET

/loadbalancers/loadBalancerId/us
age

List current
usage

XML, JSON

<?xml version="1.0" encoding="UTF-8"?>

<loadBalancerRecords xmlns="http://docs.openstack.org/loadbalancers/api/v1.0" >

 <loadBalancerUsageRecord incomingTransfer="97301" outgoingTransfer="241050"

startTime="2010-12-21T12:32:07-06:00" endTime="2010-12-21T12:36:30-06:00" />

</loadBalancerRecords>

{

 "loadBalancerRecords": [

 {

 "incomingTransfer":"1421",

 "outgoingTransfer":"10.1.1.3",

 "startTime":"2010-12-21T12:32:07-06:00",

 "endTime":"2010-12-21T12:36:30-06:00"

 }

]

}

24

3.8. Active Health Monitoring

The load balancing service includes a health monitoring operation which

periodically checks your back-end nodes to ensure they are responding

correctly. If a node is not responding, it is removed from rotation until the

health monitor determines that the node is functional. In addition to being

performed periodically, the health check also is performed against every

node that is added to ensure that the node is operating properly before

allowing it to service traffic.

Every health monitor has a type attribute to signify what kind of monitor it is.

Name Description

CONNECT Health monitor is a connect monitor

HTTP Health monitor is an HTTP monitor

HTTPS Health monitor is an HTTPS monitor

3.8.1. Connection Monitor
The monitor connects to each node on its defined port to ensure that the

service is listening properly. The connect monitor is the most basic type of

health check and does no post-processing or protocol specific health checks.

It includes several configurable properties:

 delay: The minimum number of seconds to wait before checking the

health of a node after it is put into OFFLINE status.

 timeout: Maximum number of seconds to wait for a connection to be

established before timing out.

Verb URI Description Representation

GET

/loadbalancers/loadBalance
rId/healthmonitor

Retrieves the Health
monitor configuration,

if one exists

XML, JSON

PUT /loadbalancers/loadBalance
rId/healthmonitor

Updates the settings
for a health monitor

XML, JSON

DELETE /loadbalancers/loadBalance
rId/healthmonitor

Removes the health
monitor

25

 attemptsBeforeDeactivation: Number of permissible monitor

failures before removing a node from rotation.

3.8.2. HTTP/HTTPS Monitor
The HTTP & HTTPS monitors is a more intelligent monitor that is capable of

processing a HTTP or HTTPS response to determine the condition of a node.

It supports the same basic properties as the connect monitor and includes

three additional attributes that are used to evaluate the HTTP response.

 method: The HTTP method (GET or HEAD) that will be used in the

sample request

 path: The HTTP path that will be used in the sample request

A monitoring probe is considered to have failed if the response received has

a status code that is not in the 2xx or 3xx range.

3.8.3. Retrieve the Health Monitor

Normal Response Code(s): 200

Error Response Code(s): loadBalancerFault (400, 500), serviceUnavailable

(503), unauthorized (401), badRequest(400)

This operation does not require a request body.

Example: Retrieve Health Monitor (type CONNECT): XML

URI: /loadbalancers/4532/healthmonitor

Response:

Example: Retrieve Health Monitor (type CONNECT): JSON

Verb URI Description Representation

GET /loadbalancers/loadBalance
rId/healthmonitor

Retrieves the Health
monitor configuration, if

one exists

XML, JSON

<?xml version="1.0" encoding="UTF-8"?>

<healthMonitor xmlns="http://docs.openstack.org/loadbalancers/api/v1.0" type="CONNECT"

delay="10" timeout="10" attemptsBeforeDeactivation="3" />

26

URI: /loadbalancers/4532/healthmonitor

Response:

Example: Retrieve Health Monitor (type HTTP): XML

URI: /loadbalancers/4532/healthmonitor

Response:

Example: Retrieve Health Monitor (type HTTP): JSON

URI: /loadbalancers/4532/healthmonitor

Response:

3.8.4. Update a Health Monitor

Verb URI Description Representation

PUT /loadbalancers/loadBalancer
Id/healthmonitor

Updates the settings
for a health monitor

XML, JSON

{

 "type":"CONNECT" ,

 "delay":"10",

 "timeout":"10",

 "attemptsBeforeDeactivation":"3"

}

<?xml version="1.0" encoding="UTF-8"?>

<healthMonitor xmlns="http://docs.openstack.org/loadbalancers/api/v1.0" type="HTTP"

delay="10" timeout="10" attemptsBeforeDeactivation="3" path="/" method="HEAD" />

{

 "type":"HTTP" ,

 "delay":"10",

 "timeout":"10",

 "attemptsBeforeDeactivation":"3",

 "path":"/",

 "method":"HEAD"

}

27

Normal Response Code(s): 202

Error Response Code(s): loadBalancerFault (400, 500), serviceUnavailable

(503), unauthorized (401), badRequest(400)

This operation does not return a response.

Example: Update Health Monitor (type HTTPS): XML

URI: /loadbalancers/4532/healthmonitor

Request:

Example: Update Health Monitor (type HTTPS): JSON

URI: /loadbalancers/4532/healthmonitor

Request:

3.8.5. Delete a Health Monitor

Verb URI Description Representation

DELETE

/loadbalancers/loadBalance

rId/healthmonitor

Deletes the health

monitor associated
with this load
balancer.

{

 "type":"HTTPS" ,

 "delay":"20",

 "timeout":"3",

 "attemptsBeforeDeactivation":"5",

 "path":"/check",

 "method":"GET",

}

<?xml version="1.0" encoding="UTF-8"?>

<healthMonitor xmlns="http://docs.openstack.org/loadbalancers/api/v1.0" type="HTTPS"

delay="20" timeout="3" attemptsBeforeDeactivation="5" path="/check" method="GET" />

28

Normal Response Code(s): 202

Error Response Code(s): loadBalancerFault (400, 500), serviceUnavailable

(503), unauthorized (401), badRequest(400)

This operation does not require a request.

This operation does not return a response.

After deleting the health monitor, the load balancer’s nodes health will be

monitored using passive health monitoring.

29

3.9. Session Persistence

Session persistence is a feature of the load balancing service which forces

subsequent requests from clients to be directed to the same node. This is

common with many web applications that do not inherently share application

state between back-end servers.

Table: Session Persistence Modes

3.9.1. Retrieve Session Persistence configuration

Normal Response Code(s): 200

Verb URI Description Representation

GET

/loadbalancers/loadBalance

rId/sessionpersistence

List session

persistence
configuration.

XML, JSON

PUT /loadbalancers/loadBalance
rId/sessionpersistence

Enable session
persistence.

XML, JSON

DELETE /loadbalancers/loadBalance
rId/sessionpersistence

Disable session
persistence.

Name Description

HTTP_COOKIE A session persistence mechanism that inserts an HTTP

cookie and is used to determine the destination back-end
node. This is supported for HTTP load-balancing only.

Verb URI Description Representation

GET /loadbalancers/loadBalance
rId/sessionpersistence

List session
persistence

configuration.

XML, JSON

30

Error Response Code(s): loadBalancerFault (400, 500), serviceUnavailable

(503), unauthorized (401), badRequest(400)

This operation does not require a request.

Example: Retrieve session persistence: XML

URI: /loadbalancers/4532/sessionpersistence

Response:

Example: Retrieve session persistence: JSON

URI: /loadbalancers/4532/sessionpersistence

Response:

3.9.2. Enable Session Persistence on a Load Balancer

Normal Response Code(s): 202

Error Response Code(s): loadBalancerFault (400, 500), serviceUnavailable

(503), unauthorized (401), badRequest(400)

This operation does not return a response.

Verb URI Description Representation

PUT /loadbalancers/loadBalance

rId/sessionpersistence

Enable session

persistence

XML, JSON

<?xml version="1.0" encoding="UTF-8"?>

<sessionpersistence xmlns="http://docs.openstack.org/loadbalancers/api/v1.0"

persistenceType="HTTP_COOKIE" />

{

 "persistenceType":"HTTP_COOKIE"

}

31

Example: Enable session persistence: XML

URI: /loadbalancers/4532/sessionpersistence

Request:

Example: Enable session persistence: JSON

URI: /loadbalancers/4532/sessionpersistence

Request:

3.9.3. Disable Session Persistence on a Load Balancer

Normal Response Code(s): 202

Error Response Code(s): loadBalancerFault (400, 500), serviceUnavailable

(503), unauthorized (401), badRequest(400)

This operation does not require a request.

This operation does not return a response.

Verb URI Description Representation

DELETE

/loadbalancers/loadBalance
rId/sessionpersistence

Disables session
persistence.

{

 "persistenceType":"HTTP_COOKIE"

}

<?xml version="1.0" encoding="UTF-8"?>

<sessionPersistence xmlns="http://docs.openstack.org/loadbalancers/api/v1.0"

persistenceType="HTTP_COOKIE" />

32

3.10. Connection Logging

This operation allows the user to enable/disable connection logging on the

load balancer.

3.10.1. Retrieve Connection Logging configuration

Normal Response Code(s): 200

Error Response Code(s): loadBalancerFault (400, 500), serviceUnavailable

(503), unauthorized (401), badRequest(400)

This operation does not require a request.

Example: Retrieve connection logging configuration: XML

URI: /loadbalancers/4532/connectionlogging

Response:

Verb URI Description Representation

GET

/loadbalancers/loadBalance

rId/connectionlogging

View current

configuration of
connection logging.

XML, JSON

PUT /loadbalancers/loadBalance
rId/connectionlogging

Enable or disable
connection logging.

XML, JSON

Verb URI Description Representation

GET /loadbalancers/loadBalance

rId/connectionlogging

List connection logging

configuration.

XML, JSON

<?xml version="1.0" encoding="UTF-8"?>

<connectionLogging xmlns="http://docs.openstack.org/loadbalancers/api/v1.0" enabled="true" />

33

Example: Retrieve connection logging configuration: JSON

URI: /loadbalancers/4532/connectionlogging

Response:

3.10.2. Enable or Disable Connection Logging on a Load

Balancer

Normal Response Code(s): 202

Error Response Code(s): loadBalancerFault (400, 500), serviceUnavailable

(503), unauthorized (401), badRequest(400)

This operation does not return a response.

Example: Enable connection logging: XML

URI: /loadbalancers/4532/connectionlogging

Request:

Verb URI Description Representation

PUT /loadbalancers/loadBalance
rId/connectionlogging

Enable or Disable
connection logging

XML, JSON

{

 "enabled":"true" ,

}

<?xml version="1.0" encoding="UTF-8"?>

<connectionLogging xmlns="http://docs.openstack.org/loadbalancers/api/v1.0" enabled="true"/>

34

Example: Disable connection logging: JSON

URI: /loadbalancers/4532/connectionlogging

Request:

3.11. Connection Throttling

The connection throttling feature imposes limits on the number of requests

from a single source IP address to help mitigate malicious or abusive traffic

to your applications. The following properties can be configured based on the

traffic patterns for your sites.

 maxRequestRate: Maximum number of requests allowed from one

client source IP address in the defined rateInterval.

 rateInterval: Frequency (in seconds) at which the maxRequestRate

is assessed.

For example, a maxRequestRate of 30 with a rateInterval of 60 would

allow a maximum of 30 requests per minute from a single source IP address.

Verb URI Description Representation

GET

/loadbalancers/loadBalancerI
d/connectionthrottle

List connection
throttling configuration.

XML, JSON

PUT /loadbalancers/loadBalancerI
d/connectionthrottle

Update throttling
configuration.

XML, JSON

DELETE /loadbalancers/loadBalancerI
d/connectionthrottle

Remove connection
throttling

configurations.

{

 "enabled":"false"

}

35

3.11.1. Retrieve Connection Throttling configuration

Normal Response Code(s): 200

Error Response Code(s): loadBalancerFault (400, 500), serviceUnavailable

(503), unauthorized (401), badRequest(400)

This operation does not require a request.

Example: Retrieve connection throttling: XML

URI: /loadbalancers/4532/connectionthrottle

Response:

Example: Retrieve connection throttling: JSON

URI: /loadbalancers/4532/sessionpersistence

Response:

Verb URI Description Representation

GET /loadbalancers/loadBalancer
Id/connectionthrottle

Retrieve connection
throttling
configuration.

XML, JSON

<?xml version="1.0" encoding="UTF-8"?>

<connectionThrottle xmlns="http://docs.openstack.org/loadbalancers/api/v1.0"

maxRequestRate="50" rateInterval="60" />

{

 "maxRequestRate":"50" ,

 "rateInterval":"60"

}

36

3.11.2. Update Connection Throttling configuration

Normal Response Code(s): 202

Error Response Code(s): loadBalancerFault (400, 500), serviceUnavailable

(503), unauthorized (401), badRequest(400)

This operation does not return a response.

Example: Update configuration of connection throttling: XML

URI: /loadbalancers/4532/connectionthrottle

Request:

Example: Update configuration of connection throttling: JSON

URI: /loadbalancers/4532/connectionthrottle

Request:

Verb URI Description Representation

PUT /loadbalancers/loadBalance
rId/connectionthrottle

Update configuration
of connection

throttling

XML, JSON

{

 "maxRequestRate":"50" ,

 "rateInterval":"60"

}

<?xml version="1.0" encoding="UTF-8"?>

<connectionThrottle xmlns="http://docs.openstack.org/loadbalancers/api/v1.0"

maxRequestRate="50" rateInterval="60" />

37

3.11.3. Remove Connection Throttling Configuration

Normal Response Code(s): 202

Error Response Code(s): loadBalancerFault (400, 500), serviceUnavailable

(503), unauthorized (401), badRequest(400)

This operation does not require a request.

This operation does not return a response.

Verb URI Description Representation

DELETE

/loadbalancers/loadBalance

rId/connectionthrottle

Remove connection

throttle settings.

38

3.12. Load Balancing Protocols

Normal Response Code(s): 200

Error Response Code(s): loadBalancerFault (400, 500), serviceUnavailable

(503), unauthorized (401), badRequest(400)

This operation does not require a request.

All load balancers must define the protocol of the service which is being load

balanced. The protocol selection should be based on the protocol of the back-

end nodes. When configuring a load balancer, the port selected will be the

default port for the given protocol unless otherwise specified.

Example: List Load Balancing Protocols: XML

URI: /loadbalancers/protocols

Response:

Verb URI Description Representation

GET /loadbalancers/protocols List all supported load

balancing protocols

<?xml version="1.0" encoding="UTF-8"?>

<protocols xmlns="http://docs.openstack.org/loadbalancers/api/v1.0" >

 <protocol name="HTTP" port="80" />

 <protocol name="TCP" port="*" />

</protocols>

39

Example: List Load Balancing Protocols: JSON

URI: /loadbalancers/protocols

Response:

3.13. Load Balancing Algorithms

Normal Response Code(s): 200

Error Response Code(s): loadBalancerFault (400, 500), serviceUnavailable

(503), unauthorized (401), badRequest(400)

This operation does not require a request.

All load balancers utilize an algorithm that defines how traffic should be

directed between back-end nodes.

Name Description

LEAST_CONNECTIONS The node with the lowest number of

connections will receive requests.
Each connection will be assigned to a

node based on the number of

Verb URI Description Representation

GET /loadbalancers/algorithms List all supported load

balancing algorithms

{

 "protocols":

 [

 {

 "name":"HTTP",

 "port":"80"

 },

 {

 "name":"TCP",

 "port":"*"

 },

]

}

40

concurrent connections to the node

and its weight.

ROUND_ROBIN Connections are routed to each of the

backend servers in turn, with
different proportions of traffic being
direct to a node depending on its

weight.

Example: List Load Balancing Algorithms: XML

URI: /loadbalancers/algorithms

Response:

Example: List Load Balancing Algorithms: JSON

URI: /loadbalancers/algorithms

Response:

3.14. Load Balancer Status

All load balancers have a status attribute to signify the current configuration

status of the device. This status is immutable by the caller and is updated

automatically based on state changes within the service. When a load

balancer is first created, it will be placed into a build status where the

<?xml version="1.0" encoding="UTF-8"?>

<algorithms xmlns="http://docs.openstack.org/loadbalancers/api/v1.0" >

 <algorithm name="LEAST_CONNECTIONS" />

 <algorithm name="ROUND_ROBIN" />

</algorithms>

{

 "algorithms": [

 {

 "name":"LEAST_CONNECTIONS",

 },

 {

 "name":"ROUND_ROBIN",

 }

]

}

41

configuration is being generated and applied based on the request. Once the

configuration is applied and finalized, it will be in an ACTIVE status. In the

event of a configuration change or update, the status of the load balancer

will change to PENDING_UPDATE to signify configuration changes are in

progress but have not yet been finalized. Load balancers in a SUSPENDED

status are configured to reject traffic and will not forward requests to back-

end nodes

Table: Load Balancer Statuses

Name Description

ACTIVE Load balancer is configured properly

and ready to serve traffic to incoming
requests via the configured virtual

IPs

BUILD Load balancer is being provisioned for

the first time and configuration is
being applied to bring the service
online. The service will not yet be

ready to serve incoming requests.

PENDING_UPDATE Load balancer is online, but

configuration changes are being
applied to update the service based

on a previous request.

PENDING_DELETE Load balancer is online, but

configuration changes are being
applied to begin deletion of the
service based on a previous request.

SUSPENDED Load balancer has been taken offline
and disabled

ERROR The system encountered an error
when attempting to configure the

load balancer

42

3.15. Node Condition

Every node is the load balancer has an associated condition which

determines its role within the load balancer.

Table: Load Balancer Node Conditions

 Name Description

ENABLED Node is permitted to accept new

connections

DISABLED Node is not permitted to accept any

new connections regardless of
session persistence configuration.

43

44

4. API Faults

API calls that return an error will return one of the following fault objects. All

fault objects will extend from the base fault, serviceFault, for easier

exception handling for languages that support it.

4.1. serviceFault

The serviceFault and by extension all other faults include message and

detail elements which contain strings describing the nature of the fault as

well as a code attribute representing the HTTP response code for

convenience. The code attribute of the fault is for the convenience of the

caller so that they may retrieve the response code from the HTTP response

headers or directly from the fault object if they choose. The caller should not

expect the serviceFault to be returned directly but should instead expect only

one of the child faults to be returned.

4.2. loadBalancerFault

The loadBalancerFault fault shall be returned in the event that an error

occurred during a loadbalancer operation.

4.3. badRequest

This fault indicates that the data in the request object is invalid; for example,

a string was used in a parameter that was expecting an integer. The fault will

wrap validation errors.

<?xml version="1.0" encoding="UTF-8"?>

<loadBalancerFault xmlns="http://docs.openstack.org/loadbalancers/api/v1.0" code="401">

 <message>Account ID in URL not recognized</message>

</loadBalancerFault>

45

4.4. itemNotFound

4.5. overLimit

4.6. unauthorized

This fault is returned when the user is not authorized to perform an

attempted operation.

<?xml version="1.0" encoding="UTF-8"?>

<badRequest xmlns="http://docs.openstack.org/loadbalancers/api/v1.0" code="400">

 <message>Validation fault</message>

 <details>Validation fault</details>

 <validationErrors>

 <message>Node IP is invalid. Please specify a valid ip. </message>

 </validationErrors>

</badRequest>

<?xml version="1.0" encoding="UTF-8"?>

<itemNotFound xmlns="http://docs.openstack.org/loadbalancers/api/v1.0" code="404">

 <message>Load Balancer not found </message>

</itemNotFound>

<?xml version="1.0" encoding="UTF-8"?>

<overLimit xmlns="http://docs.openstack.org/loadbalancers/api/v1.0" code="404">

 <message>

 Your account is currently over the limit so your request could not be processed

 </message>

</overLimit>

<?xml version="1.0" encoding="UTF-8"?>

<unauthorized xmlns="http://docs.openstack.org/loadbalancers/api/v1.0" code="404">

 <message> Your auth token is invalid. Please renew. </message>

</unauthorized>

46

4.7. outOfVirtualIps

This fault indicates that there are no virtual IPs left to assign to a new

loadbalancer. In practice, this fault should not occur, as virtual IPs will be

provisioned as capacity is required.

4.8. unprocessableEntity

This fault is returned when an operation is requested on an item that does

not support the operation, but the request is properly formed.

4.9. serviceUnavailable

This fault is returned when the service is unavailable, such as when the

service is undergoing maintenance. Note that this does not necessarily mean

that the currently configured loadbalancers are unable to process traffic; it

simply means that the API is currently unable to service requests.

<?xml version="1.0" encoding="UTF-8"?>

<outOfVirtualIps xmlns="http://docs.openstack.org/loadbalancers/api/v1.0" code="500">

 <message> Out of virtual IPs. </message>

</outOfVirtualIps>

<?xml version="1.0" encoding="UTF-8"?>

<unprocessableEntity xmlns="http://docs.openstack.org/loadbalancers/api/v1.0" code="422">

 <message> The object at the specified URI does not support this operation. </message>

</unprocessableEntity>

<?xml version="1.0" encoding="UTF-8"?>

<serviceUnavailable xmlns="http://docs.openstack.org/loadbalancers/api/v1.0" code="500">

 <message> The load balancing service is currently not available. </message>

</serviceUnavailable>

47

48

5. API Extensions

Implementations of this API specification are free to augment it with

extensions as they see appropriate to extend Load Balancing features (e.g.

support for new LB algorithms) in this API or offer new ones.

All client applications written to this core specification (using the base API)

should work against extended implementations as specified in this document.

Therefore, applications should not receive values not specified in this

specification or obtain a different behavior than expected when they are not

using (or aware of the availability of) extended APIs.

5.1. Discovering extensions

Implementations should allow users to discover if the LB service supports

extensions, together with details about the extensions (document pointers,

etc.).

Normal Response Code(s): 200

Error Response Code(s): loadBalancerFault (400, 500), serviceUnavailable

(503), unauthorized (401), badRequest(400)

Verb URI Description Representation

GET /extensions Returns extensions
supported by this
implementation of the

Load Balancing service

49

Example: Retrieving extension information: XML

URI: /extensions

Response:

5.2. Using extended APIs

Clients should operate on resources using extension URIs in order to make

use of the extension.

To create a load balancer with extra features, the client uses the extension

URI

POST /loadbalancers/ext/<ext-name>

The same load-balancer can be retrieved using either:

GET /loadbalancers/loadBalancerId

in which case, only the features and attributes defined in this document are

returned.

<?xml version="1.0" encoding="UTF-8"?>

<extensions xmlns="http://docs.openstack.org/common/api/v1.0"

 xmlns:atom="http://www.w3.org/2005/Atom">

 <extension name="SSL Offload"

 namespace="http://docs.citrix.com/loadbalancing/openstack/v1.0"

 alias="CTX-LBSSL"

 updated="2011-07-05T09:45:16-23:00">

 <description>

 Adds the capability of decrypting SSL traffic by the load balancer before forwarding it to nodes

(SSL Offload).

 </description>

 <atom:link rel="describedby"

 type="application/pdf"

 href="http://docs.citrix.com/loadbalancing/openstack/ext/ctx-lbssl/lbssl-11.pdf"/>

 </extension>

</extensions>

50

Or

GET /loadbalancers/ext/<ext-name>/loadBalancerId

Which returns the extended version of the load balancer (with extra

attributes).

Similarly, if updating the load balancer using the standard attributes, the

client can update against the URI

PUT /loadbalancers/loadBalancerId

And when using extended attributes, the client must use the URI for the

extension:

PUT /loadbalancers/ext/<ext-name>/loadBalancerId

Clients can always use the core APIs for resources created or updated with

extension APIs. Extension resources are always defined as pure supersets of

core resources.

New types of resources can be added in the extension API that have no

counterpart in the core API. These resources can be used only from the

extension API.

Example: Create Load Balancer with CTX-LBSSL extension Request: XML

Request : POST /loadbalancers/ext/ctx-lbssl/

Request Body

<?xml version="1.0" encoding="UTF-8"?>

<loadBalancer xmlns="http://docs.openstack.org/loadbalancers/api/v1.0"

xmlns:ctx="http://docs.citrix.org/netscaler/openstack/api/v1.0" id="71" name="a-new-

loadbalancer" protocol="HTTPS" port="80" algorithm="ROUND_ROBIN">

 <virtualIp type="PUBLIC" ctx:ssloffload="true" />

 <nodes>

 <node address="10.1.1.1" port="80" />

 <node address="10.1.1.2" port="8080" />

 </nodes>

 <ctx:sslcert keypair="certkey-ssl-212" />

</loadBalancer>

51

Example: Create Load Balancer with CTX-LBSSL extension Response: XML

Example: Create Load Balancer with CTX-LBSSL extension Request: JSON

Request : POST /loadbalancers/ext/ctx-lbssl/

Request Body

{

 "loadBalancer" :

 {

 "name":"a-new-loadbalancer",

 "protocol":"HTTP",

 "port":"80",

 "algorithm":"ROUND_ROBIN",

 "ctx:ssloffload":"true",

 "virtualIp": {"type":"PUBLIC"},

 "nodes": [

 {

 "address":"10.1.1.1",

 "port":"80",

 },

 {

 "address":"10.1.1.2",

 "port":"8080",

 }

],

 "ctx:sslcert":{ "keypair":"certkey-ssl-212" }

 }

}

<?xml version="1.0" encoding="UTF-8"?>

<loadBalancer xmlns="http://docs.openstack.org/loadbalancers/api/v1.0" id="71"

xmlns:ctx="http://docs.citrix.org/netscaler/openstack/api/v1.0" name="a-new-loadbalancer"

status="ACTIVE" protocol="HTTP" port="80" algorithm="ROUND_ROBIN" ctx:ssloffload="true">

 <virtualIp address="206.55.130.2" ipVersion="IPV4" type="PUBLIC" />

 <nodes>

 <node id="1041" address="10.1.1.1" port="80" condition="ENABLED" status="ONLINE" />

 <node id="1411" address="10.1.1.2" port="8080" condition="ENABLED" status="ONLINE" />

 </nodes>

 <ctx:sslcert keypair="certkey-ssl-212" />

</loadBalancer>

52

Example: Create Load Balancer with CTX-LBSSL extension Response: JSON

 {

 "loadBalancer" :

 {

 "id" : "71",

 "name":"a-new-loadbalancer",

 "status":"ACTIVE",

 "protocol":"HTTP",

 "port":"80",

 "algorithm":"ROUND_ROBIN",

 "ctx:ssloffload":"true",

 "virtualIp": {

 "address":"206.55.130.2",

 "ipVersion":"IPV4",

 "type":"PUBLIC"

 },

 "nodes": [

 {

 "id":"1041",

 "address":"10.1.1.1",

 "port":"80",

 "condition":"ENABLED",

 "status":"ONLINE"

 },

 {

 "id":"1411",

 "address":"10.1.1.2",

 "port":"80",

 "condition":"ENABLED",

 "status":"ONLINE"

 }

],

 "sessionPersistence": {

 "persistenceType":"HTTP_COOKIE"

 },

 "connectionLogging":{

 "enabled":"true"

 },

 "ctx:sslcert":{

 "keypair":"certkey-ssl-212"

 },

 "cluster":{

 "name":"dc-eastcoast-4"

 },

 "created":{

 "time":"2010-11-30T03:23:42.000+0000"

 },

 "updated":{

 "time":"2010-11-30T03:23:44.000+0000"

 }

 }

}

