
L3 Tenant-facing
Abstractions/Model

Motivation
 Routing within the

tenant (support
multi-tier
topologies)

 Overlapping IP
addresses

 Support gateways –
Internet, VPN

 Support other L3
services – LB,
Firewall, Caching,
etc.

 Hybrid Cloud
(Public + Private)

Further evolve Quantum to be a multi-tenant network
service for creating virtual data centers (application
specific topologies + network services)

Proposal: Tenant Facing L3 Abstractions

 Tenant

 An individual customer or a distributed application that requires
a set of resources assigned to meet a particular set of functions.

 Expects networking services from Quantum to isolate and/or
connect subsets of the resources

 L3 Abstractions

 Allow the tenant to request connectivity between its resources
at the granularity of subnets and endpoints on a subnet

 Allow the tenant to request gateway services

 Allow the tenant to insert it’s own gateway services

 Design Goal – Make life easier for the user (user will probably *not*
be a network admin!)

The role of a Plugin in Quantum

 Before proceeding further, it’s important to note that
Quantum adopts a plugin-based approach to realize the
abstractions it exposes

 A plugin is a vendor/technology-specific entity which maps
the abstractions to the underlying infrastructure

 As such, the Service Provider specific model required to
realize the tenant-facing abstractions can be wrapped inside
the plugin

 A SP model to represent the SP infra is also desirable,
however, as a first step we are proposing only a tenant facing
model

Quantum L3 (Tenant) Model Schematic

Tenant VM

SP resources created for tenant

Project/Tenant

SP managed
infrastructure

Public
Network

SP-Local
Network

Tenant owned network
resources

Tenant VM
Tenant VM

Plug

Create

Create

Internet Gateway Other Services

Tenant resources

Tenant VM ID, IP
Addr

L2 NetworkL2 NetworkL2 Network

L3 SubnetL3 SubnetL3 Subnet

Create Routes

Route-table

Map

“VPN” (Target)“VPN” (Target)VPN Gateway

VPN
VPNVPN

Target
Associate Targets

3rd Party Resources

VM ID, IP Addr

Target Entities

Legend:New
resources

proposed for the
L3 model in

Quantum

Note: Route-table and Target are *not* the same as routing tables in a router, or a route-target in the BGP context.

Definitions (as used in the current context)

 Subnets

 A logical subdivision of an IP network expressed using a CIDR notation.
Entities residing on a subnet appear to the tenant as directly
connected and do not require setting up routes for connectivity (with
the ability to override this default behavior).

 Route-tables

 A Route-table is a tenant instantiated resource that provides
operations to manipulate routing entries. One can conceptually think
of a Route-table mapping to a logical routing entity.

 Each row in the table has a Target column, which effectively resolves
to a next hop – hence the notion of routes and route-table. (Note: as
explained later these route-tables are different from routing tables in
routers or Linux hosts.)

 Targets

 These are service gateways such as an Internet Gateway, VPN, NAT
router, a VM which is serving this function, or any other service.

Resources’ Relationship

Route-table

1

L3 Subnet

L2 Network

1

0..*

1

1

0..*

Target

1

0..*

1

0..*

Project/Tenant

Route-table

A Route-table is a tenant instantiated resource that provides operations
to manipulate routing entries. One can conceptually think of a Route-
table mapping to a logical routing entity.

Each entry in the Route-table is of the following format:

Source: Subnet resource ID or CIDR

Destination: Subnet resource ID or CIDR (0.0.0.0 for default)

Target: A Target resource ID such that the SP should be able to resolve
the ID to a single endpoint (e.g. IP address)

One Route-table per tenant.

Source Destination Target

Targets

These are service gateways such as an Internet Gateway, VPN, NAT router,
a VM which is serving this function, or any other service.

The target can take one of the following values:

1. A reference (i.e. UUID) to an explicitly created target resource. This
target resource could point to one of the following:

a. A gateway service (Internet , VPN, other) provided by the SP.

b. A resource belonging to the same tenant or another tenant providing
some service (e.g. a NAT VM).

(Details on how to create the target resource are in the following slides.)

2. A reference (i.e. UUID) to the subnet in the Destination column of the
route-table (this is to account for the direct connection between two
subnets, or to IP addresses on the same subnet).

Creating a Target to point to a SP managed gateway

The tenant queries the SP for the available target types by calling:
list_target_types(tenant_id)

The SP responds with a list of the available target types, e.g.:
type_id=“Public”, type_name=“Internet Gateway”

type_id=“VPN 1”, type_name=“VPN Gateway”, protocol=“IPSec”,

version=“1”

type_id=“VM Resource”, type_name=“Virtual Machines”

Note: The above are not actual entities, they are types of targets which the SP
supports in the context of this tenant.

The tenant makes another call to request creating a target corresponding to one
of these types - e.g.

create_target(tenantID, name=“My Internet Gateway”, type_id=“Public”).

The SP creates a target resource (an actual entity) specific to this tenant (and
also the necessary configuration to instantiate the “Internet Gateway” in the
case of the above example).

The tenant can refer to this target in multiple routes (and/or create additional
such targets).

Creating a Target to point to a Resource with an IP address

There are two possibilities here:

1. The resource is owned by the same tenant

The tenant creates a target with the information about the VM - e.g.
create_target(tenantID, name=“My NAT”, type_id=“VM

Resource”, resource_id=“nat_vm_uuid”,

ip_addr=“vm_ip_address”)

2. The resource is owned by a different tenant. There are again two
possibilities here:
a. The resource has an IP address on the SP’s “public” network, e.g. a storage

service
create_target(tenantID, name=“External Storage”, type_id=“VM Resource”,

ip_addr=“storage_ip_address”)

b. The resource is on a private network,
create_target(tenantID, name=“target_web_server_x”, type_id=“VM

Resource”, target_tenant=“web_server_tenant_uuid”

ip_addr=“server_x_private_ip”,

auth_token=“token_to_access_web_server”)

APIs

Resource URL GET POST PUT DELETE

Subnets /v2.0/tenants/{tenant-id}/subnets Y Y - -

/v2.0/tenants/{tenant-id}/subnets/{subnet-id} Y - Y Y

Route-
tables

/v2.0/tenants/{tenant-id}/route_table Y Y Y -

/v2.0/tenants/{tenant-id}/route_tables/{routetable-id} Y - Y Y

Targets /v2.0/tenants/{tenant-id}/targets Y Y - -

/v2.0/tenants/{tenant-id}/targets/{target-id} Y - Y Y

/v2.0/tenants/{tenant-id}/targets/types Y

API at a glance

[Strickthrough text – These API calls are not required with one route-table per tenant]

Subnets
def create_subnet(tenant_id, CIDR, **kwargs)

def show_subnet(tenant_id, subnet_id, **kwargs)

def update_subnet(tenant_id, subnet_id, **kwargs)

def delete_subnet(tenant_id, subnet_id, **kwargs)

def list_subnets(tenant_id, **kwargs))

kwargs:

name

description

network_id_list

Route-tables

create_route_table(tenant_id, routes_list, **kwargs)

show_route_table(tenant_id, route_table_id, **kwargs)

delete_route_table(tenant_id, route_table_id, **kwargs)

update_route_table(tenant_id, route_table_id, routes_list,

**kwargs)

list_route_tables(tenant_id, **kwargs)

route_list:

List of routes in the format: Source, Destination, Target

kwargs:

name

description

[Strickthrough text – These API calls are not required with one

route-table per tenant]

Targets
create_target(tenant_id, **kwargs)

kwargs:

name

description

type_id

resource_id

ip_address

target_tenant

auth_token

show_target(tenant_id, target_id, **kwargs)

delete_target(tenant_id, target_id, **kwargs)

update_target(tenant_id, target_id, **kwargs)

list_target_types(tenant_id, **kwargs)

Use Cases

Conventions used in the following examples

 Private Subnets

 These subnets reside on the tenant’s private IP address space and do not have a
route to the public network (Internet).

 Public Subnets

 VMs on these subnets have a default route to the public network (Internet). They
are also associated with Floating (public) IPs, hence they can be accessed from the
Internet. This association of Floating IPs is a separate feature, and it’s specification
is not captured in this proposal.

 The following are not prescriptive, could be target type driven):

 Intra-subnet traffic is always allowed, i.e. entities on the same subnet are always
assumed to be directly connected and do not require an entry in the route-table.

 Inter-subnet traffic is not allowed by default, i.e. there is no implicit routing
to/from subnets; routing will happen between entities on different subnets only if
a routing entry exists in the route-table.

 Routes are reflexive, i.e. no explicit route entry needs to be created for a
connection’s return path. A stateful entity which tracks connection states might be
required to achieve this.

Public
Subnet

(ID:
Subnet-A)

10.0.0.0/24

Web Server
10.0.0.5

198.51.100.1 (FIP)

Web Server
10.0.0.8

198.51.100.4 (FIP)

Source Destination Target

Subnet-A 0.0.0.0 “My Internet Gateway”*

*Refers to the ID of a target resource created by
the tenant with the following call:

create_target(tenantID, name=“My

Internet Gateway”,

type_id=“Public”)

Use case: One publicly accessible subnet
Public subnet can also initiate connections to the Internet

Private
Subnet

(ID:
Subnet-A)

10.0.0.0/24

Application
10.0.0.5

Application
10.0.0.8

Source Destination Target

Subnet-A 0.0.0.0 “My VPN Gateway”*

*Refers to the ID of a target resource created by
the tenant with the following call:

create_target(tenantID, name=“My

VPN Gateway”, type_id=“VPN 1”,

protocol=“IPSec”, version=“1”)

Use case: One private subnet
Private subnet can also initiate connections to the home network via VPN

Public
Subnet

(ID:
Subnet-A)

10.0.0.0/24

Web Server
10.0.0.5

198.51.100.1 (FIP)

Web Server
10.0.0.8

198.51.100.4 (FIP)

Private
Subnet

(ID:
Subnet-B)

10.0.1.0/24

DB Server
10.0.1.5

DB Server
10.0.1.6

Source Destination Target

Subnet-A 10.0.1.0/24 Subnet-B

Subnet-B 10.0.0.0/24 Subnet-A

Subnet-A 0.0.0.0 “My Internet Gateway”

Subnet-B 0.0.0.0 “My VPN Gateway”

Use case: Public and VPN Access
One publicly accessible subnet, which can also initiate connections to the Internet
One private subnet, which can also initiate connections to the home network via VPN

Public
Subnet

(ID:
Subnet-A)
10.0.10.0/24

Web Server
10.0.10.2

198.51.100.1 (FIP)

Web Server
10.0.10.3

198.51.100.4 (FIP)

Private
Subnet

(ID:
Subnet-B)
10.0.20.0/24

App Server
10.0.20.2

App Server
10.0.20.3

Use case: 3-tier app
One publicly accessible subnet and two private Subnets
Public subnet can also initiate connections to the Internet

Private
Subnet

(ID:
Subnet-C)
10.0.30.0/24

DB Server
10.0.30.2

DB Server
10.0.30.3

Source Destination Target

Subnet-A 10.0.20.0/24 Subnet-B

Subnet-B 10.0.30.0/24 Subnet-C

Subnet-A 0.0.0.0 “My Internet Gateway”*

*Refers to the ID of a target resource created
by the tenant with the following call:

create_target(tenantID, name=“My

Internet Gateway”,

type_id=“Public”)

