
Inception Cloud User’s Guide

1 Overview

Creating an inception cloud consists of preparing your workstation, preparing
the VM environment by adding a temporary boot-up machine, and then execut-
ing the orchestrator programme to build the cloud. Once the inception cloud
has been created, there is a small amount of housekeeping that is necessary to
be able to reach the new cloud. This document describes the software necessary
to support and manage an inception cloud, lists the steps needed to start an
inception cloud, provides information on accessing the inception cloud and in-
cludes the command needed to stop the cloud. The final section contains a small
bit of guidance which addresses how to access VMs running on the inception
cloud.

Some knowledge of OpenStack, virtual machines and the Nova client com-
mand line interface is assumed. This document provides some OpenStack com-
mands to assist with VM setup, but makes no attempt to explain their syntax
or to further illustrate any command line parameters that are not directly used
in the examples.

1.1 Workstation Requirements

Typically, an inception cloud is started and managed from a regular user ac-
count on a remote workstation. There are several software requirements that
are necessary for the workstation, and the user must have slightly advanced
privledges (sudo). The following list the workstation and user requirements:

• User must have sudo privileges that allow /etc/hosts and iptables to be
modified

• Python version 2.7

• IPython version 0.13.2 or later

• Sshuttle

• Nova Client version 2.13.0 or later

• Nova oslo.config version 1.1.1 or later

• Git

1

2 Preparation 2

• Inception software from github

It is possible to use the boot-up VM, described later, as the workstation instead
of using it just as a passthrough machine. With the exception of when sshut-
tle is needed, the setup and startup of an inception cloud is nearly the same
regardless of whether the ”workstation” is real or virtual. This document will
address just the use of a physical workstation, outside of the OpenStack virtual
world, to create and manage an inception cloud; the reader is left to make the
small extrapolations that allow the boot-up VM to be used in place of a real
workstation if that is desired.

2 Preparation

To prepare the workstation and the virtual environment to start an inception
cloud, the tasks listed below, and explained in more detail in subsequent sec-
tions, must first be performed. All of these should be done on the workstation or
from the workstation browser via the OpenStack dashboard or the Nova client
CLI.

1. Install software

2. Set environment variables

3. Create keys

4. Start small boot-up VM

5. Add floating IP to the VM

6. Start sshuttle

2.0.1 Install Software

Some or all of the required software might already be installed. Verify that the
correct versions of each of the software packages are available on the workstation
and take steps to upgrade or load the missing packages as is needed. The flavour
of Linux installed on your workstation will dictate the exact commands (e.g.
apt-get or zypper) that are needed to load andor upgrade Python, sshuttle, and
pip. Pip can then be used to install Nova and Oslo. Examples of each of the
commands that might be needed to manage the required software packages are
presented in Appendix A.

2.0.2 Inception source

The source for inception is available from github. The command below will
fetch the inception source and place it in a directory under the current working
directory.

git clone https://github.com/stackforge/inception.git

2 Preparation 3

Following the execution of the git command, switch to the inception direc-
tory and verify that the directory was populated. Inception may be installed,
or used from this directory. If the decision is made to install inception, the
following command should be used:

python setup.py install

2.0.3 Set Environment Variables

Ensure that the environment variables which define the authorisation URL and
credentials for OpenStack are set and exported. OpenStack credentials can be
obtained using the OpenStack dashboard interface and following these steps:

1. Log into the dashboard

2. Click the Settings link (top right)

3. Click the OpenStack API link on the left

4. Click the Download RC File button and save the file to disk.

Once the file has been saved to disk you can source the file (the assumption is
made that the shell being used is bash compatible). Sourcing the file should
prompt for a password, and then export the following variables to the environ-
ment:

OS AUTH URL The reference to a process which provides user au-
thentication.

OS PASSWORD The password for your account (you’ll be prompted
to enter this when the file is sourced).

OS TENANT ID The ID string for the tenant (currently refered to as
the project on the dashboard).

OS TENANT NAME The human form of the tenant ID.

OS USERNAME Your user name.

2.0.4 Create Keys

Create (if needed) a public/private key pair and register it with OpenStack. If
you do not have a key pair, generate one using nova. (I prefer to name these
with the OpenStack cluster/environment name, and then the key name with an
extension that indicates private key: agave.scooter.pk.)

touch agave.scooter.pk

chmod 600 agave.scooter.pk

nova keypair-add scooter >>agave.scooter.pk

2 Preparation 4

The commands above will create the key, write it to disk and register the
public key with OpenStack. Executing the touch and chmod commands prior to
generating the key adds a bit of security which prevents the exposure of the key
which results if the permissions on the key file are changed after it is generated.
Regardless of when the permissions are changed, they will need to be changed
in order for the file to recognised and used by ssh.

If you already have a private key (one that several users might share) then a
public key can be generated from the private key and registered with OpenStack:

ssh-keygen -f agave.shared.pk -y >agave.shared.puk

nova keypair-add --pub-key agave.shared.puk shared

If you have both a public and private key file, then the ssh-keygen com-
mand can be skipped; it is only necessary to supply the existing public key to
OpenStack using the nova command line.

2.0.5 Start Tiny Boot-up VM

Create and initialise a tiny VM that will act as the initial gateway to the virtual
environment for processes running on the workstation. For the examples used in
the remainder of this document, the boot-up VM is given the name scooter_bv.
The VM should be started with the key that was registered with OpenStack.

nova boot --image centos --flavor m1.tiny --key_name shared \

--security_groups default scooter_bv

}

The VM should boot quickly and once it is active you may continue.

2.0.6 Add A Floating IP Address

Add a floating (public) IP address to the new VM so that it can be reached from
the ”real world.” (xxx.xxx.xxx.xxx is one of the public floating IP addresses that
are available; use nova floating-ip-list to get a list of available addresses.

nova add-floating-ip scooter_bv xxx.xxx.xxx.xxx

2.0.7 Start sshuttle

The sshuttle programme creates a tunnel through ssh allowing programmes on
the workstation to access VMs created on the same internal network as the
boot-up VM without having to assign each VM a public address. The sshuttle
command is given the private key portion of the key pair that was used to
start the boot-up VM; this is necessary to allow sshuttle to start an ssh session
through which the tunnel is created. The user name (ubuntu in the example
below) is any user on the boot-up VM that is available and allows access via
the key (the assumption is that OpenStack created this user, or it was a part of
the saved imagee, and the public key was inserted into the authorized_keys

file in the user’s .ssh directory.)

3 Running Orchestrator 5

sshuttle -e ssh -A -i ~/.vmkeys/agave.shared.pk -v \

-r ubuntu@xxx.xxx.xxx.xxx 192.168.254.0/24

The -v option causes sshuttle to be more verbose with messages to the standard
error device. Ultimately, redirecting the output of sshuttle to /dev/null and
running the process asynchronously, is probably wise, but initially seeing the
verbose messages scroll by in the window is a nice confirmation that the tunnel
is active and data is being transferred. The xxx IP address is the public floating
IP address assigned earlier. The second address (192.168.254.0 in the example)
bb the virtual network that is created by OpenStack. If it is not known, the
following command (with suitable path for the public key) might provide the
address:

ssh -i ~/.vmkeys/agave.shared.pk ubuntu@xxx.xxx.xxx.xxx ifconfig eth0

The netmask can be used to determine the number of bits of the address
that are treated as the network ID (probably 24) and thus added after the slant
on the sshuttle command.

3 Running Orchestrator

The orchestrator command, located in the bin directory under the source
that was fetched from github, is used to start and stop an inception cloud.
The inception cloud environment consists of at least 4 Inception Control VMs
(ICVMs) in the environment:

• A gateway machine that will be given a public IP address and function
much in the same way as the boot-up VM being used to start the cloud.

• A controller machine used to run the OpenStack software and to provide
the OpenStack Dashboard interface.

• A chef machine used to manage Chef installation and configuration scripts.

• One or more worker machines used to host the inception virtual machines
(iVMs).

The following sections describe how orchestrator is used.

3.1 Starting The Inception Cloud

The orchestrator command is located in the bin directory within the source
cloned from github. The bin directory can be added to the path, or the command
can be executed with a fully qualified path. It will probably be necessary to
add the top level inception directory to the PYTHONPATH environment variable
if inception was not installed. Using the --help option will cause all of the

3 Running Orchestrator 6

Workstation OpenStack Environment

Boot−VM

Gw Ct Ch Wk

Orchestrator

sshuttle

P
u

b
lic

 N
e

tw
o

rk

Controller Compute

VMs

Other

Virtual Network

Private (control) Network

Real

Virtual

In
c

e
p

ti
o

n

C
lo

u
d

Fig. 1: The environment, after orchestrator has created ICVMs, showing the commu-

nication path between orchestrator and the ICVMs.

possible command line options to be written to the tty device. For the most
part, at least for the first time user, only a few are needed and are described
below.

-p prefix This command line flag is required and supplies the prefix
string that is used when defining the ICVM names.

-n n Specifies the number of work ICVMs that are created. The
iVMs which are created in the inception cloud are hosted on
the work VMs thus the number needed is directly related
to the number of iVMs that will be created in the inception
cloud.

- -image= Supplied the image name to be used for all ICVMs. If not
supplied a base image of Ubuntu 12.04 (64 bit) is created
and used for each ICVM.

- -ssh keyfile= Provides the name of the private key that is to be injected
as the user key for each of the control VMs that are created.

- -user= The user name created on each node with sudo capabilities.
If not given, ubuntu is used.

The following illustrates the command to start an inception cloud with one
worker and a prefix of scooter0.

orchestrator -n 1 -p scooter0 \

--ssh_keyfile=$HOME/.vmkeys/agave.shared.pk

The creation and initialisation of the ICVMs takes about 20 minutes during
which time a fair few messages are written to standard error. When orchestrator

3 Running Orchestrator 7

has finished, a set of messages should be written to stdout indicating success
and which give the IP addresses and URLs for various things in the newly
created environment. The following is a sample of these messages (date, time,
and system indentification information has bee excluded for brevity):

Your inception cloud ’scooter0’ is ready!!!

Gateway IP is 135.207.223.158

Chef server WebUI is http://192.168.254.28:4040

OpenStack dashboard is https://192.168.254.29

3.2 Stopping The Inception Cloud

The inception cloud can be stopped manually by halting all of the ICVMs,
or orchestrator can be used giving it the --cleanup command line flag which
causes it to terminate all of the ICVMs.

orchestrator -p scooter0 --cleanup

3.3 Finalisation

It will take approximately 20 minutes for orchestrator to start the inception
cloud. Once orchestrator reports that the inception cloud is ready, a small
amount of housekeeping should be done. These tasks include:

• Determining the network addresses of the gateway ICVM.

• Repointing sshuttle to use the gateway ICVM and to reference the ICVM
control network

• Stopping the boot-up VM

• Adding the controller to /etc/hosts

• Creating credentials for your inception cloud

3.3.1 Repointing Sshuttle

Once the ICVMs are running, sshuttle should be ”pointed” at the gateway
ICVM so that the boot-up VM can be stopped. Sshuttle must also be set to
tunnel requests for the private control network that is used by the ICVMs as
this is the network on which the nova authorisation and dashboard processes
listen on. The following commands illustrate how this can be done:

nova list | grep scooter0-gateway

ssh ubuntu@yyy.yyy.yyy.yyy ifconfig eth1

sshuttle -e ssh -A -i ~/.vmkeys/agave.shared.pk -v \

-r ubuntu@yyy.yyy.yyy.yyy \

192.168.254.0/24 zzz.zzz.zzz.0/24

3 Running Orchestrator 8

Where:

scooter0 Is the prefix that was given to orchestrator when the in-
ception cloud was started.

yyy.yyy.yyy.yyy Is the public IP address for the gateway.

zzz.zzz.zzz.0 Is the network address of the control network. The net-
mask also must be checked to determine if /24 is the ap-
propriate number of bits being used to represent a host id;
if not it must be changed to match the netmask.

ubuntu Is the user name that was injected onto each of the ICVMs.

After these commands are executed sshuttle will again be running on the
workstation and managing a tunnel between the workstation and both the vir-
tual network and the inception cloud’s private control network in the OpenStack
environment.

3.3.2 Modifying /etc/hosts

In order to use the inception cloud OpenStack dashboard (URL given in the
last set of messages generated by orchestrator), the workstation must be able to
resolve the controller host name (e.g. scooter0-controller using the earlier
example prefix). The easiest way to do this is to have sshuttle forward all DNS
requests to the inception cloud environment for resolution. This is done with
the addition of a command line flag on the sshuttle command, however shuffling
all of the workstation’s DNS traffic into the VM environment is probably not
a very wise choice. Instead, the host name of the controller, and it’s control
network IP address (zzz.zzz.zzz.hhh) should be added to the /etc/hosts file on
the workstation.

3.3.3 Setting Credentials

Credentials must be set in the environment to allow nova to be used on the
workstation to control the iVMs in the inception cloud. The following is a list of
variables that must be exported and their approximate values (the IP address
supplied for the authorisation URL will be different as might the username).
The password was given to the user demo via the dashboard using the admin
user ID.

export OS_AUTH_URL=http://10.251.0.3:5000/v2.0/

export OS_TENANT_NAME="demo"

export OS_USERNAME=demo

export OS_PASSWORD=demo

4 Starting and Using iVMs 9

Workstation OpenStack Environment

Gw Ct Ch Wk

Browser

Controller Compute

VMs

Other

Virtual Network

Private (control) Network

Real

Virtual

In
c

e
p

ti
o

n

C
lo

u
d

sshuttle

P
u

b
lic

 N
e

tw
o

rk

Fig. 2: The virtual environment after cleanup showing path of browser traffic with the

dashboard.

The network address given is that of the private control network. The dash-
board can be used to setup any users andor projects (tenants) that are needed
in the inception cloud. The admin user ID and password are admin/admin by
default.

Following housekeeping, the environment should be as shown in figure ??.

4 Starting and Using iVMs

The dashboard andor nova command line commands can be used to start and
manage iVMs within the inception environment. The iVMs are allocated across
the worker ICVM(s) that were created by orchestrator. The nova command line
interface can be used on either the controller ICVM (Ct in the illustration), or
directly from the workstation (provided that the proper environment variables
have been defined and that sshuttle is tunneling traffic to the private control
network). Figure ?? illustrates the logical relationship of the inception plane
with the hosting OpenStack (virtual plane) environment.

There are two methods which can be used to ssh into an iVM host. First
is to ssh into the gateway, then to ssh to a worker ICVM, and finally to ssh

to the desired iVM. The second is to string all of the ssh commands together
into a single command. Regardless of which method is used, the -A and -i

command line options will need to be given on the initial ssh command in order
to forward authorisation with each step, and to use the private key that is
associated with the ICVMs. While it is necessary to use the -i option only on
the first command, the -A option must be given on all of the ssh commands.

If a single command line is used, it will also be necessary to use the -t option
to force ssh to treat each hop as a terminal session. The next command example
illustrates a single ssh command that creates a log-in session on an iVM.

4 Starting and Using iVMs 10

Real W
orld

Virtu
al P

lane

Inceptio
n Plane

iVM

iVM

iVM

W
k

G
w

C
t

C
h

Inception management VMs

Inception created cloud VMs

Other VMs sharing the same project

in the ’real’ OS environment

Fig. 3: The relationship between the inception plane and the virtual plane.

ssh -t -A -i agave.shared.pk ubuntu@135.207.223.158 \

ssh -t -A ubuntu@scooter0-worker1 \

ssh -t ubuntu@10.252.0.2

If this command is going to be executed from a script, or just to make
life easier, it might be good to add the following options to each of the ssh
commands.

-o UserKnownHostsFile=/dev/null -o StrictHostKeyChecking=no

These prevent information about the hosts being accessed from being saved
in the known_hosts file and prevent ssh from complaining if the host informa-
tion was previously saved and is different from the current information. Be
aware that because the host information is being pushed to /dev/null, ssh will
indicate that it has been added each time the commands are executed (this is
less bothersome than having to clean out the known hosts file as the VM host
information changes).

A Installation examples 11

A Installation examples

The following commands illustrate how each of the necessary software packages
can be installed. Your milage may vary depending on wither your system uses
apt-get, zypper, or some other package management software.

apt-get -y install python

apt-get -y install ipython

apt-get -y install pip

apt-get -y install sshuttle

pip install python-novaclient

pip install oslo.config

cd $HOME/repo # any writable directory should do

git clone https://github.com/stackforge/inception.git

(cd inception && python setup.py install)

Original: August 26, 2013

Revised: September 19, 2013
Source: ic user.tex

